DEFORMATION OF LEAD DISKS UNDER IMPACT
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The effect of relatively low-velocity (1-3 m/sec) impact on a thin disk of imcompressible
viscoplastic material placed in the gap between parallel rough surfaces is considered. The
state of stress of the interlayer is assumed nearly hydrostatic during impact, the duration of
which is limited by the elastic deformation of the elements of the striker system. The math-
ematical problem of determining the distributions of stresses, velocities, and temperatures
for the axisymmetrie deformation of a disk is reduced to the integration of an erdinary sec-
ond-order differential equation. Numerical calculations for certain cases of impact are com-
pared with the results of experiments on lead samples. Plane strain of an interlayer of vis-
coplastic material between rigid plates moving with a constant velocity is discussed in [1].
The state of stress of the interlayer for the same conditions of motion of the plates was
studied in [2] for axial symmetry. In the present paper we take account of the impact nature
of the loading and the elastic compression of the elements of the striker system, factors on
which the deformation and the pressure developed in the impact depend.

We consider the axial compression of a thin disk of viscoplastic material placed between rough parallel
plates. The thickness of the disk §,isvery much less than its radius R. Using the fact that /R is small,
the equations of motion and continuity of the medium in cylindrical coordinates simplify to '
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where u and v are the radial and axial components of the velocity, respectively; gi{i=r, ¢, z) and Ty, are
the components of the stress tensor; and ¢ is the density of the material.

We consider viscoplastic flow of the interlayer. Based on the picture of the state of stress found in
[1] for a plane strain we assume that the tangential stress T, reaches the yield point Tg = 05/V3 at the
contact surfaces, where 0y is the yield stress for uniaxial compression, assuming that the Mises yield
criterion is satisfied. We assume that within the interlayer the tangential stresses are very much smaller
than the normal stresses.

We use the fact that 6/R is small and average the equations of motion (1) over z from 0 to 4. Since

'rrz==k'rsatz=0andz=6,weobtain
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From now on we omit the bars over quantities to denote averages.
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Let w = d&/dt < 0 be the rate of axial displacement of the striker. Assuming that the contact surfaces
remain plane during impact, we find that the equation of continuity is satisfied for the following values of the
particle velocities averaged over the cross section of the layer:

u-:—%—, v=22, (3)

It is known [3] that for axisymmetric flow of a viscoplastic body the components of the stress devia-
tor are related to the components of the rate of strain tensor by the equation
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where ¢ is the plastic viscosity of the material which, as is the case with Tg, is generally a function of tem-
perature, pressure, and rate of strain [4]. We find from (4)
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Taking account of (1), (3), and (5) and integrating (2) subject to the condition 6. (R) = 0, we obtain
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The average pressure on the striker due to the interlayer is
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In (6) and (7) 4 and 0g must be considered as the effective values of the viscosity and yield stress of the
material averaged over the radius of the disk. If these averages do not depend on pressure, temperature,
and rate of strain, we can set 4 = pyand 0 = O'OS. As 4 — 0 and p —~ 0 we find from (7) the value of the
average stress for a rigid-plastic body [4]. Assuming that the contract surfaces are smooth and that the
second term in (7) is absent, we arrive at the expression obtained in {2].

We consider impact on the viscoplastic interlayer with relatively low velocities |wyl. We have from

(7

p=63+ 3‘; - |6' . (8)

Assuming that the displacement of the center of gravity of the striker is made up of the decrease in
the thickness of the interlayer and the elastic compression of the striker, from Newton's second law we
find

(3=t =)= s=am (9)

Here k is the ultimate rigidity of the elements of the striker system and depends somewhat on the energy
of the impaet, and M is the mass of the striker. In writing (9) we assume that at t = 0 the compression of
the striker is negligible in comparison with the thickness of the disk, i.e.,
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" We introduce the dimensionless variables t=-—w,/5, 2=8,/8, y=w/w,, P =p/o, and the quantities z=a,3/kS,,
B = 0,58,/ M, v=2RI3138, &= —3uw,sp, Then the flow parameters in the impact of the interlayer
can be found by solving the system '

(a=i—1—aP)=pP, P—1--vyziezy, (10)
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System (10) leads to the second-order differential equation
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For € = 0 we find from (11) the law of solving down of the striker by the layer of rigid-plastic mate-
rial [5]:
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For an absolutely rigid striker (a = 0) from (12) we obtain
y=[1—2Bylnz—28(1 —z~1)] /2,

We turn to a diseussion of the heating of the spreading layer. For axisymmetric motion of a viscoplastic
medium the heat flux equation for small &/R has the form
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where A and ¢, are the thermal eonductivity and specific heat of the material. If pcplwld/ 22 >1, the first
term on the right-hand side of (13) can be neglected practically up to the instant the striker comes to rest.
We pose the problem of calculating the maximum temperature averaged over the radius and thickness of
the interlayer. Integrating (13) under the condition T (§;) = 0 and using (4), we obtain

' Gs 3y ¢
T=T7,-T, = Inz— pf:af, j y(8) dE. (14)
1

Here the first term Ty characterizes the plastic heating of the medium and the second T,, the contribution
of viscous heating.

Equations (10) and (14) were solved nﬁmerically by computer using the standard fourth-order Runge—
Kutta program. The accuracy of the calculation was 0.5-1%.

We turn to an analysis of the data on impact experiments with thin disks (§; = 1 mm, R = 5 mm) of
technical lead. The experimental procedure is similar to that described earlier [6] in connection with in-
vestigations of the laws of the impact fracture of thin samples of brittle low-strength materials. The
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TABLE 1

1%l T /S€C 1 {s 3
k,kbar.cm 130 {50 130 160
px, kbar 4.7 7.5 10,1 15,5
tg, msaec 0,90 0.83 0,83 0,80
Pm» kbar 1,6 2.8 5,3 12,3
I, msec 0,96 1,07 0,94 0,75
In =, 0.71 1,43 2,29 279
TABLE 2

5 2 3

m/sec I ! ' Le I l .

P 2,05 2,29 { 5,67 11,93
e 0723 | 082t | 0785 | 0,662
Inz, 0,478 1,065 1,681 2,475

necessary information on the character of the loading of the lead disks was derived from an analysis of
pressure—time oscillograms obtained by using a wire strain gauge and by measuring the maximum com-
pression of the interlayer x) after the impact. The samples under study were placed between the flat ends
of 10-mm-diameter roller bearings. The experiments were performed on a vertical drop hammer with a
freely falling 10-kg load moving with a velocity |w,| = 1-3 m/sec which applied an axial blow through the
rollers. )

Figure 1a and b shows oscillograms of the pressure during impact with no material between the rol-
lers ("empty collision") and in an experiment with a lead disk (|wy| = 2m/sec; the time marks are 200 psec
apart). The presence of the plastic interlayer increases the time of impact by more than 50% and nearly
halves the maximum pressure. Three characteristic parts can be distinguished on the pressure—time curve ’
shown in Fig. 1b. During a short initial period t; ~ 100 psec the pressure rises rapidly to ~ 1 kbar. The
rate of increase of pressure then decreases somewhat and from the time t, ~ 600 psec it again reaches ap-
proximately its initial value. This behavior of the curve can be related to the fact that at the start of the
impact the deformation of the sample is nearly elastic. When the lead in an inner annular zone reaches the
yield point the sample is transformed to the plastic state [4]. With a further increase in pressure the plas-
tic zone expands, and from time t; developed plastic (viscoplastic) flow begins in practically the whole in-
terlayer. The average pressure corresponding to this instant is given by Eq. (8). As the thickness of the
disk is decreased the resistance to the motion of the striker increases rapidly and from time t, the energy
of the weight is predominantly expended in the compression of the striker system. The further behavior of
the curve in Fig. 1b is very similar to the "empty collision" oscillogram (Fig. 1a) with the time of fall off
of the pressure from the maximum p,,, approximately the same in the two cases.

Table 1 presents the results of measurements of certain collision parameters in experiments with
lead samples. Here py and t, are the maximum pressure and the time of an empty collision, and ty, ‘is the
time to reach the maximum pressure Pm in the experiments with lead. Calculations performed with Eq.
(10) for € = 0 (model of a rigid-plastic body) show (Table 2) that the measured values of Pry agree satis-
factorily with the theoretical if we set 0 = 0.5 kbar. However, the calculated values of xi differ appreci-
ably from the experimental.

There is good agreement between measured collision parameters

TABLE 3 and those calculated with the model of a viscoplastic medium (Table 3)
welmn/se€! 1 | 15 | o 3 if different 0 and ¢ are used for different values of |wy|, keeping them
% Kbar 05 o Yol 27 1 Uk within reasonable limits close to the experimental values [2, 7].

, N Figure 2 shows curves calculated from (10) and (14) for p(1), x(2),

P kbar 1,5112,90 19,26 112,20 and y (3) as functions of 7 for |wy| = 2 m/sec (a = 0,0131, B = 0,0491,

L, TSEC 0,863 0.917) 0,834} 0.683 Y = 1.9245, € = 2.4, so that d = 0.0697), The curve for p(7) closely co-

In z; 0,708} 1,487} 2,2401 2,758 incides with the experimental (open) curve if for the time of the initial

n, R 15,0 31,5 42,7 [i1,0 stage of the impact, which is not taken into account in the theory, is as-

T2, R 23,8 68,6 |178 {1u3 sumed Ty = 0.2 or t; = 0.1 msec. The dashed-dot part of curve 1 is
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TABLE 4

Vieal, M /fsec i 1.5 3
kbar - cm | 1900 | 1500 | 1500
Pis kb 3,06 |7,02 | 30,9
P kbel 0'805 { 0606 | 0,474
In zp 1,535] 2,518 3,682

Fig. 2

plotted from experimental data under the assumption of elastic relief of the elements of the striker system.

A certain regularity is observed in the sequence of values of 0g and ¢ used in the caleulations. These
are the values of the yield point and the viscosity of the material of the interlayer averaged over the time
of the impact. For small impact velocities of 1~2 m/sec 0g and § are approximately constant and vary on-
ly for |wy| = 3 m/sec when the range of pressures and the role of dissipative effects are noticeably in-
creased. Thus, if & = 10° p is used to calculate T for the last case in Table 3 we obtain a temperature of
329°C, which is the melting point of lead under normal pressure, instead of 105°C. Therefore, the increase
of 0 with increasing |w,| can be related mainly to the strengthening of lead, and the decrease in 4 to the
heating of the interlayer. Table 4 shows how important it is to take account of the deformation of the ele-
ments of the striker system. The table gives the collision parameters calculated with the values of ogand
i given in Table 3, but with the rigidity k of the striker equal to 10 kbar - cm,
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